

# DeepTech Hackathon 2026

## AI-Enabled Chip Design

Build breakthrough solutions for AI defect classification for semiconductor wafer/die images. Grand Finale at IESA Vision Summit 2026 (Bengaluru) – pitch to IESA leadership + top industry experts.



Organized By



Hackathon Partner



Partners



## About the IESA Hackathon

---

The IESA DeepTech Hackathon is a national platform for building practical, industry-ready solutions in two of the most critical technology domains shaping India's electronics future: semiconductor design and embedded systems.

This hackathon is designed to do more than just collect ideas. It is structured to help teams move from a problem statement to a clear solution architecture, working prototype/demo, and a compelling pitch, supported by domain mentorship and a transparent evaluation framework.

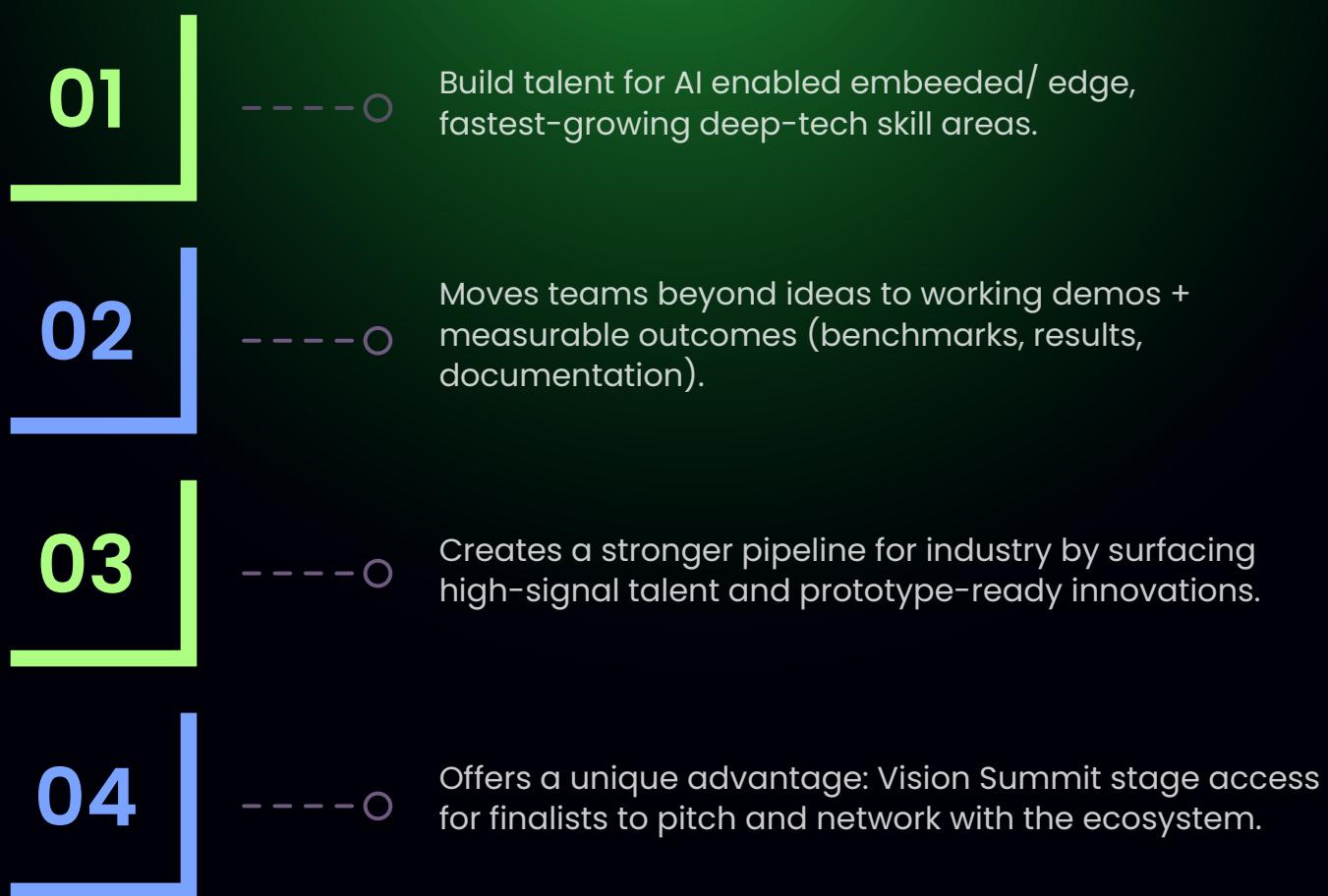
## Grand Finale at IESA Vision Summit 2026 – Bengaluru

---

The most promising teams will be shortlisted to pitch at the IESA Vision Summit 2026. Finalists will get the opportunity to present to IESA leadership, semiconductor and electronics industry experts, and ecosystem partners offering high visibility, strong credibility, and real opportunities to take solutions forward.

## Why This Hackathon Matters

---


India's electronics and semiconductor ecosystem is entering a rapid growth phase, with industry demand shifting from **only coding to deep-tech building** across **silicon and embedded systems**.

As chip design complexity increases, companies are adopting **AI/ML in workflows** to accelerate verification, optimize PPA, and improve design-space exploration. In parallel, real-world products are being deployed at the **edge**, where secure, low-latency, and reliable **embedded applications** are critical.

The **IESA DeepTech Hackathon 2026** aligns directly with these trends, providing a national platform for talent to build **industry-relevant prototypes** in two future-critical tracks:

Finalist teams will showcase their solutions at the **IESA Vision Summit 2026, Bengaluru**, gaining visibility with **IESA leadership and senior industry experts**, and unlocking real next-step opportunities beyond the hackathon.

## Why it matters:



- 01** Build talent for AI enabled embedded/ edge, fastest-growing deep-tech skill areas.
- 02** Moves teams beyond ideas to working demos + measurable outcomes (benchmarks, results, documentation).
- 03** Creates a stronger pipeline for industry by surfacing high-signal talent and prototype-ready innovations.
- 04** Offers a unique advantage: Vision Summit stage access for finalists to pitch and network with the ecosystem.

## Problem Statement

---

### Edge AI-Based Defect Classification System for Semiconductor Wafer/-Die Images

#### Background

Semiconductor fabrication involves hundreds of tightly controlled steps. Any step can introduce microscopic defects that impact performance or cause catastrophic failures. Modern lines generate terabytes of inspection images daily, captured using tools such as optical microscopes, Scanning Electron Microscope (SEM), Atomic Force Microscope (AFM), and defect review stations.

Centralized analysis/manual review struggles due to:

- High latency
- Expensive infrastructure
- Network/bandwidth bottlenecks
- Difficulty scaling to real-time throughput

Edge-AI enables on-device defect analysis with minimal latency and reduced dependency on cloud connectivity, aligned with Industry 4.0 manufacturing environments

## Problem Description

Semiconductor manufacturing produces large volumes of wafer and die inspection images. Defects in these images can reduce yield and cause failures, but traditional centralized/manual inspection creates latency, bandwidth bottlenecks, and high infrastructure cost, making it difficult to scale to real-time production needs.

Your task is to develop an Edge AI-based solution capable of detecting and classifying defects in semiconductor wafer and die images using AI/ML techniques. The design must carefully balance accuracy, latency, computational efficiency, and ease of deployment on edge based hardware.

## Objective

Design and build an Edge-AI powered defect classification system capable of:

1. Detecting and classifying defects in wafer/die images into predefined categories
2. Demonstrating strong accuracy with lightweight compute (edge constraints)
3. Supporting real-time, high-volume inspection workflows by being portable to edge deployment flows (NXP eIQ)

## Scope & Key Requirements

### Dataset Data collection and dataset creation

- Select at least six distinct types (classes) of semiconductor manufacturing defects, ensuring that no two defect classes overlap (example defect types include shorts, opens, bridges, malformed vias, CMP scratches, cracks, LER, etc. see reference section below for sample images). In addition to these defect classes, you must also include the categories "Clean" and "Other", resulting in a minimum total of eight classes.
- Gather images representing both clean and defective samples from any available source to build your own dataset. No dataset will be provided during the Hackathon, except during Phase 2, where a test dataset will be supplied exclusively for prediction.
- Your dataset should include a minimum of 500 images covering the clean, defective, and "Other" categories, with a well balanced distribution across classes. For better model performance, a dataset of over 1,000 images is recommended.
- Prefer using black-and-white (single channel) images; color images are not recommended.

### Model Development Scope

- Use Python
- Framework: TensorFlow / PyTorch / any AI framework (allowed)
- Training approach: from scratch or transfer learning (allowed)
- Target: good accuracy + low model size + portability for edge deployment

## Edge Porting Scope (Software Only)

- Port the trained model using NXP eIQ platform targeting NXP i.MX RT series devices.
- No hardware/board demo is in scope; ends at generation of deployment artifacts / bit-file output as per flow.
- Technical Support by Hackathon organizers for this step is limited to online documentation.

## Documentation & Presentation Scope

- Document end-to-end approach, innovation highlights, challenges faced, and future scope.
- Present solution in a clear and structured manner (dataset → model → evaluation → edge porting → impact).

## Objective

Teams must submit the following (as applicable by phase):

1. Document describing problem understanding, approach, dataset plan, model plan etc. as provided in the template. Submit a filled pdf document.
2. Dataset: single .zip file of images + class categories. Follow folder structure to group the images into Train, Validation, Test folders. Each of these folders should contain sub-folders for 'clean', 'other', 'defect class Name\_1', 'defect class Name\_2' ... 'defect class Name\_N'.
3. Trained ML Model: in ONNX format
4. Model Results (on your test set): Accuracy, Precision, Recall, Confusion Matrix, Model size, Algorithm used, platform used for training and inference.
  - Note1: If you have used GPUs/cloud infra please specify
  - Note2: Model can be built from scratch or could use pre-trained models with transfer-learning.
5. GitHub repository link (mandatory) with README complete code of development.
6. Model Results (hackathon test set): Accuracy, Precision, Recall, Confusion Matrix.
7. NXP eIQ Ported Model Results: text file of instruction stack (as per eIQ documentation)
8. Complete code (preprocessing + training + inference)
9. Final Documentation addressing the end-to-end solution covering development and learning from all the above stages.

## Evaluation Data Rule

After the phase-1 submission deadline, the submitted model becomes the reference model, and no re-submission is allowed. Teams then proceed to next steps and edge-porting.

| Phase                                        | Phase 1                                                                                 | Phase 2                                                                      | Phase 3                                                                                                                               |
|----------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <b>Who participates</b>                      | All teams                                                                               | Shortlisted teams for Phase 2 (30 Teams)                                     | Finalists (10 Teams)                                                                                                                  |
| <b>Goal</b>                                  | Register and submit the first version of the solution and approach                      | Validate model generalization using organizer-provided test images           | Demonstrate edge readiness + deliver final pitch                                                                                      |
| <b>What teams must submit (Deliverables)</b> | Items #1-5 of deliverables mentioned above                                              | Item #6 of deliverables mentioned above                                      | Items #7-9 of deliverables mentioned above                                                                                            |
| <b>Evaluation Criteria</b>                   | Dataset Quality, size, Class balance, Model Accuracy, Model Size                        | Prediction Accuracy, Number of Defect classes model can classify, Model Size | Successful generation of bitfile, Size of generated model stack, Patentable concepts, Innovation Publication possibility, Methodology |
| <b>Steps</b>                                 | 1) Data Collection, Dataset creation, Proposed Methodology<br>2) AIML model development | 1) Prediction using Hackathon Supplied 'Test Dataset'                        | 1) Model Porting and Optimization for Edge-AI<br>2) Presentation, Documentation                                                       |

## Remarks

- The hackathon is aimed at an intermediate development level, positioned between a prototype and a fully functional solution. Participants are encouraged to explore diverse ideas and demonstrate creativity in how they approach the challenge.
- During Phase #1 above, it would be good to prepare for phase #3 by pre-visiting requirements for phase #3 to ensure compatibility, portability, model conversion formats etc.
- For phase #3 No hardware boards will be provided as part of hackathon. It ends with generation of bit-file. Support for Phase #3 is limited to the online documentation already available. No additional support will be provided.

## References

### NXP eIQ documentation:

- <https://www.nxp.com/design/design-center/software/eiq-ai-development-environment/eiq-toolkit-for-end-to-end-model-development-and-deployment:EIQ-TOOLKIT>
- Sample images and document – Defect Classification System for Semiconductor Sample Images

## Hackathon Timeline

---

**19-Jan-26**

### **Registrations Open (Only Registration)**

Team registrations go live. Create your team and complete registration early so you're ready when problem statements are revealed.

**21-Jan-26**

### **Problem Statements Revealed**

Official problem statements are published. Review problem statement and start planning your approach.

**23- Jan- 2026**

### **Orientation Session (Online)**

Join the official orientation to understand the problem statement, objective and delivery, hackathon flow, submission format, evaluation criteria, and tips to build a strong entry.

**28 Jan 26**

### **Webinar / Q&A session 1**

Join quick interactive webinars to understand the concept and get clarification on doubts.

**04 Feb 26**

### **Webinar / Q&A session 2**

Join quick interactive webinars to understand the concept and get clarification on doubts.

**08 Feb 26**

### **Phase 1 Submission Closes**

Final deadline for Phase 1 idea submission. Make sure your entry follows the template and is complete.

**11 Feb 26**

**Announcement of Semi-Finalists (Phase 2 Teams)**

Selected teams for Phase 2 will be announced on email/portal. Next-step instructions and Phase 2 requirements will be shared.

**12 Feb 26**

**Phase 2 Kickoff Session (30 Selected Teams Only)**

Mandatory online session for Phase 2 teams related to deliverables & expectations

**18 Feb 26**

**Phase 2 Submission Closes**

Submit Phase 2 deliverables. Final deadline for Phase 2 submissions. No changes accepted after this.

**19 Feb 26**

**Finalists Announcement (Top Teams for Grand Finale)**

Finalists are announced and onboarded for the Vision Summit Grand Finale. Travel and venue instructions will be shared.

**21 Feb 26**

**Mentoring for Finalists (Closed Sessions)**

Focused mentoring to polish the solution, strengthen demo readiness, and finalize the pitch deck.

**24–25 Feb 2026**

**Team Arrival & Venue Onboarding (Bengaluru)**

Finalists arrive, check-in, and settle. Venue orientation, tech checks, and schedule briefing (as per summit plan).

**25–26 Feb 2026**

**Grand Finale @ IESA Vision Summit 2026 (Bengaluru)**

Finalists pitch on the Vision Summit stage to IESA leadership and senior industry experts. Winners are announced with prizes and next-stage opportunities.

## Prizes and Rewards



## Beyond Cash – What Finalists Get

- 01** Access to IESA Vision Summit 2026 (Bengaluru): Finalists get the opportunity to attend the summit and pitch on a high-visibility stage in front of IESA leadership and senior industry experts.
- 02** Sponsor Kits & Tool Benefits: Exclusive hardware / development kits, tool credits, and goodies from sponsoring partners (subject to sponsor availability).
- 03** High-Value Networking: Direct networking with industry leaders, semiconductor & embedded experts, startups, and ecosystem partners at the summit.
- 04** Internship & Job Opportunities: Top teams get visibility for internships, hiring opportunities, and project collaborations with participating companies and partners.
- 05** Recognition & Visibility: Certificates, digital badges, and feature highlights across IESA + i4C channels for top teams.

## About IESA

---

IESA is India's leading industry body for ESDM, semiconductors, and intelligent electronics, connecting industry, startups, academia, and policymakers to strengthen India's innovation and manufacturing ecosystem.

## About IESA Vision Summit 2026

---

IESA Vision Summit 2026 is IESA's flagship industry gathering focused on advancing India's semiconductor and electronics (ESDM) ecosystem bringing together industry leaders, policymakers, startups, academia, and technology experts for strategic discussions, partnerships, and showcases. The 2026 theme is "Design to Manufacturing – Synergy of Product, Production and Skill", emphasizing India's transition toward a Product Nation, Production Nation, and Skills Nation.



25–26 Feb 2026



The Leela Bhartiya City Convention Centre,  
Bengaluru, India.

**2000+**

Delegates

**60+**

Exhibitors

**20**

Keynotes

**6+**

Panel Discussions

**25+**

Sessions

## About i4C

---

i4C (Inter Institutional Inclusive Innovations Centre) is a national innovation and Hackathon-as-a-Service partner working with government bodies, industry, startups, and academic institutions. i4C designs and executes high-impact hackathons, innovation programs, and upskilling initiatives that help identify talent, validate ideas, and build real-world, deployable solutions.



# Frequently Asked Questions

## Who can participate?

Students, Btech, BE, PhD, research fellow.

## What is Team size?

2–4 members (recommended).

## Online or offline?

Development is online; Grand Finale at IESA Vision Summit 2026, Bengaluru.

## What to submit?

Deck + demo/prototype + documentation + repo/video (as applicable).

## Do we need to buy hardware?

For embedded track, teams may use their own dev boards and hardware.

## What's the evaluation basis?

Innovation, feasibility, technical depth, impact, demo quality.

**Follow  
For  
Updates**

**IESA**



@India Electronics and  
Semiconductor Association



@iesaonline

**i4C**



@Inter Institutional Inclusive  
Innovations Center



@i4CIndia

**DeepTEch  
Hackathon Update**



Scan this QR code to join  
this group